本文旨在通过探索基于神经网络的方法(称为Sun)中的内在不确定性来提高文本到SQL解析的性能。从数据不确定性的角度来看,可以从多个语义等效的问题中学到单个SQL。从以前仅限于一对一映射的方法中不同,我们提出了一个数据不确定性限制来探索潜在的互补语义语义多个语义等效问题(多对一)中的信息,并以减少的虚假关联来学习稳健的特征表示。通过这种方式,我们可以降低学习表示的敏感性并改善解析器的鲁棒性。从模型的不确定性角度来看,神经网络的权重之间通常存在结构信息(依赖性)。为了提高神经文本到SQL解析器的普遍性和稳定性,我们提出了模型不确定性约束,以通过强制执行不同扰动编码网络的输出表示形式来完善查询表示形式,以使其彼此一致。在五个基准数据集上进行的广泛实验表明,我们的方法显着优于强大的竞争对手,并实现了新的最新结果。为了获得可重复性,我们在https://github.com/alibabaresearch/damo-convai/tree/main/main/sunsql上发布代码和数据。
translated by 谷歌翻译
文本到SQL解析是一项必不可少且具有挑战性的任务。文本到SQL解析的目的是根据关系数据库提供的证据将自然语言(NL)问题转换为其相应的结构性查询语言(SQL)。来自数据库社区的早期文本到SQL解析系统取得了显着的进展,重度人类工程和用户与系统的互动的成本。近年来,深层神经网络通过神经生成模型显着提出了这项任务,该模型会自动学习从输入NL问题到输出SQL查询的映射功能。随后,大型的预训练的语言模型将文本到SQL解析任务的最新作品带到了一个新级别。在这项调查中,我们对文本到SQL解析的深度学习方法进行了全面的评论。首先,我们介绍了文本到SQL解析语料库,可以归类为单转和多转。其次,我们提供了预先训练的语言模型和现有文本解析方法的系统概述。第三,我们向读者展示了文本到SQL解析所面临的挑战,并探索了该领域的一些潜在未来方向。
translated by 谷歌翻译
长期以来,可以将可以应用于新数据库的文本到SQL解析器的重要性已得到认可,实现此目标的关键步骤是架构链接,即在生成SQL时正确地识别未见列或表的提及。在这项工作中,我们提出了一个新颖的框架,以通过基于PoinCar \'e距离指标的探测程序从大规模预训练的语言模型(PLM)中引起关系结构,并使用诱导的关系来增强基于图的解析器为了更好的模式链接。与常用的基于规则的架构链接方法相比,我们发现探测关系也可以稳健地捕获语义对应关系,即使提及和实体的表面形式不同。此外,我们的探测过程完全不受监督,不需要其他参数。广泛的实验表明,我们的框架在三个基准测试中设定了新的最新性能。我们从经验上验证我们的探测程序确实可以通过定性分析找到所需的关系结构。
translated by 谷歌翻译
最近训练模型通过利用大规模文本语料库来改善神经网络的上下文表示能力,显着提高了各种NLP任务的性能。大型预培训语言模型也已应用于表语义解析的区域。然而,现有的预训练方法没有仔细探索问题与相应的数据库模式之间的明确互动关系,这是揭示其语义和结构对应的关键成分。此外,在架构接地背景下的问知表示学习在预训练目标中受到更少的关注。为了减轻这些问题,本文设计了两种新的预训练目标,将所需的归纳偏差将所需的归纳偏差施加到表前的学习表现-训练。我们进一步提出了一种模式感知课程学习方法来减轻噪声的影响,并以易于努力的方式从预训练数据中学习。我们通过在两个基准,蜘蛛和罢工中进行微调,评估我们预先接受训练的框架。结果表明,与各种基线相比,我们的预训练目标和课程的有效性。
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
Stance detection refers to the task of extracting the standpoint (Favor, Against or Neither) towards a target in given texts. Such research gains increasing attention with the proliferation of social media contents. The conventional framework of handling stance detection is converting it into text classification tasks. Deep learning models have already replaced rule-based models and traditional machine learning models in solving such problems. Current deep neural networks are facing two main challenges which are insufficient labeled data and information in social media posts and the unexplainable nature of deep learning models. A new pre-trained language model chatGPT was launched on Nov 30, 2022. For the stance detection tasks, our experiments show that ChatGPT can achieve SOTA or similar performance for commonly used datasets including SemEval-2016 and P-Stance. At the same time, ChatGPT can provide explanation for its own prediction, which is beyond the capability of any existing model. The explanations for the cases it cannot provide classification results are especially useful. ChatGPT has the potential to be the best AI model for stance detection tasks in NLP, or at least change the research paradigm of this field. ChatGPT also opens up the possibility of building explanatory AI for stance detection.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Smart City applications, such as traffic monitoring and disaster response, often use swarms of intelligent and cooperative drones to efficiently collect sensor data over different areas of interest and time spans. However, when the required sensing becomes spatio-temporally large and varying, a collective arrangement of sensing tasks to a large number of battery-restricted and distributed drones is challenging. To address this problem, we introduce a scalable and energy-aware model for planning and coordination of spatio-temporal sensing. The coordination model is built upon a decentralized multi-agent collective learning algorithm (EPOS) to ensure scalability, resilience, and flexibility that existing approaches lack of. Experimental results illustrate the outstanding performance of the proposed method compared to state-of-the-art methods. Analytical results contribute a deeper understanding of how coordinated mobility of drones influences sensing performance. This novel coordination solution is applied to traffic monitoring using real-world data to demonstrate a $46.45\%$ more accurate and $2.88\%$ more efficient detection of vehicles as the number of drones become a scarce resource.
translated by 谷歌翻译
Unbiased learning to rank (ULTR) studies the problem of mitigating various biases from implicit user feedback data such as clicks, and has been receiving considerable attention recently. A popular ULTR approach for real-world applications uses a two-tower architecture, where click modeling is factorized into a relevance tower with regular input features, and a bias tower with bias-relevant inputs such as the position of a document. A successful factorization will allow the relevance tower to be exempt from biases. In this work, we identify a critical issue that existing ULTR methods ignored - the bias tower can be confounded with the relevance tower via the underlying true relevance. In particular, the positions were determined by the logging policy, i.e., the previous production model, which would possess relevance information. We give both theoretical analysis and empirical results to show the negative effects on relevance tower due to such a correlation. We then propose three methods to mitigate the negative confounding effects by better disentangling relevance and bias. Empirical results on both controlled public datasets and a large-scale industry dataset show the effectiveness of the proposed approaches.
translated by 谷歌翻译